Google earth V 6.2.2.6613. (December 13, 2017). Santa Barbara, United States. 34.6099° N, 120.0665° W, Eye alt 13.72 feet. DigitalGlobe 2020. http://www.earth.google.com [December 12, 2023].
The Thomas Fire
On December 4, 2017, the Thomas Fire in Santa Barbara County. began to sweep throughout Ventura and Santa Barbara County, CA. For 40 days, a devistating total of 281,893 acres were consumed; destroying 1,063 structures and claiming two casualties (one civilian and one firefighter). Investigations have found that this wildfire was the result of a “line slap,” shared between Southern California Edison (“SCE”) powerlines during a high wind event that sparked hot materials to ignite a nearby fuel bed (Ventura County Fire Department). As of 2019, SCE agreed to a $360 million settlement to address the conglomorate negative impacts caused by the Thomas Fire, Woolsey Fire, and Koeningstein Fire. As well as, the ripple effect of the Thomas Fire, which was especially felt by community members in January of 2018 when 23 lives were claimed from a debris flow in Montecito (Wildfire Today,California Govenor’s Office of Emergency Services).
Objective
To get a better understanding of the initial environmental and public health impacts caused by the Thomas Fire, together, we will explore the Air Quality Index (AQI) of SB County between 2017/01 - 2018/10. We’ll quanitfy and visualize the amount of particulate matter seen in the image abouve using both the Daily AQI and the average AQI over a 5 day rolling window in units of ppm. In addition, we will gain insight into what parts of Santa Barbara County were exposed to the Thomas Fire, through the examination of burn scars using false-color imaging on Landsat 8 satellite data from the Microsoft Planetary Computer (“MPC”). We will use a simplified collection of bands (red, green, blue, near-infrared and shortwave infrared) from the Landsat Collection 2 Level-2 atmosperically corrected surface reflectance data.
Outcome
In AQI the figure on the left, there is a sharp peak observed the day the Thomas Fire began (Dec. 4, 2017) that fell within the Very Unhealthy category and over a 5 day period, averaged out into the Unhealthy category. This trend can be observed at the noted location in the figure below, indicating negative public health effects on air quality resulting from the Thomas Fire. The figure on the right, displays the large parcel of Santa Barbara County that was engulfed by the fire, explaining the uptake in particulate matter observed in December of 2017. There were significant direct impacts on public health in terms of air quality as a response to this fire and this can be understood when considering the size of the burn scar seen in the figure on the right.
For our true and false color imagery, we are going to direct access Microsoft Planetary Computer Landsat Collection 2 Level-2 data. The STAC item utilized for this project is ****LE07_L2SP_042036_20171217_02_T1****. The raster data was collected on 2017-12-17.
This data should be used for visualization purposes only.
California Fire Perimeter Data for Burn Scar Visualization
US Environmental Protection Agency (2023). Daily AQI by County [Data File]. Available from https://aqs.epa.gov/aqsweb/airdata/download_files.html#AQI. Accessed October 25, 2023
Microsoft Planetary Computer. Landsat Collection 2 Level-2 [Dataset]. Available from https://planetarycomputer.microsoft.com/dataset/landsat-c2-l2. Accessed November 28, 2023
California Department of Forestry and Fire Protection (2023). California Fire Perimeters (all) [Data File]. Available from https://gis.data.ca.gov/datasets/CALFIRE-Forestry::california-fire-perimeters-all-1/about. Accessed November 28, 2023
Software Specifications
Code
#------------------------------------# ---- Load the Essentials ----#------------------------------------# Reading in libraries and functionsimport osimport warningsimport numpy as npimport pandas as pdimport pystacimport planetary_computerimport rasterioimport xarray as xrimport geopandas as gpdimport rioxarray as rioxrfrom shapely.geometry import Polygonimport matplotlib.pyplot as pltfrom matplotlib.lines import Line2Dimport matplotlib.patches as mpatches
Read & Wrangle SB County AQI Data
To simplify our workflow, we’re going to combine the 2017 and 2018 data sets, and wrangle a single concatonated dataset.
Once we have one dataset, we will select our region of interest (ROI) and correct the Date dtype so it may be used as the index to calculate the average Air Quality Index over a 5 day rolling window.
Code
#------------------------------------# ---- Read & Wrangle ----#------------------------------------# Reading in the dataaqi_17 = pd.read_csv('https://aqs.epa.gov/aqsweb/airdata/daily_aqi_by_county_2017.zip') aqi_18 = pd.read_csv('https://aqs.epa.gov/aqsweb/airdata/daily_aqi_by_county_2018.zip') # glueing the datasets togetheraqi = pd.concat([aqi_17, aqi_18]) # .str.replace(' ','_') to replace the space for _aqi.columns = aqi.columns.str.lower().str.replace(' ','_') # Subsetting using loc# selecting SB countyaqi_sb = aqi.loc[aqi.county_name =='Santa Barbara'] # isolating desired columns aqi_sb = aqi_sb.iloc[:, 4:] # Datetime Indexing# converting the date type to datetimes64aqi_sb.date = pd.to_datetime(aqi_sb.date) # updating the index to the data column aqi_sb = aqi_sb.set_index('date') # Rolling Window Mean Calc# provides rolling window calculations of # the mean aqi over 5 day periods aqi_sb['five_day_average'] = aqi_sb.aqi.rolling('5D').mean()
Check-point
Is everything looking as we expect it to?
Code
#------------------------------------# ---- Check Point! ----#------------------------------------# checking that dataframes joined properly and column names changedprint('The number of aqi observations in 2017 were:', len(aqi_17.Date))print('The number of aqi observations in 2018 were:', len(aqi_18.Date))print('The number of aqi observations between 2017-2018 were:', len(aqi.date))
The number of aqi observations in 2017 were: 326801
The number of aqi observations in 2018 were: 327537
The number of aqi observations between 2017-2018 were: 654338
AQI Visualization: Scatter Plot of 5 Day Average AQI Assessment, Santa Barbara County (Jan 2017 - Oct 2018)
The visual below displays the mean AQI over a 5 day rolling window between January 2017 and October 2018. The background of the plot is color categorized according to the AQI’s six categories of concern for ppm levels. A relative trend of moderate is seen throughout the year. However,a spike in air pollutants between the months of December 2017 and January 2018 is clearly observed. The sharp initial peak observed the day the Thomas Fire began (Dec. 4, 2017) caused an inital AQI response within the Very Unhealthy category and over a 5 day period, averaged out into the Unhealthy category. This trend can be observed at the noted location in the figure below, indicating negative public health effects on air quality resulting from the Thomas Fire.
Code
#------------------------------------# ---- Customization ----#------------------------------------# Define AQI categories and colorsaqi_categories = {'Good': (0, 50, '#00E400'),'Moderate': (51, 100, '#FFFF00'),'Unhealthy for Sensitive Groups': (101, 150, '#FF9933'),'Unhealthy': (151, 200, '#FF0000'),'Very Unhealthy': (201, 300, '#8B0000'),'Hazardous': (301, 500, '#800080')}colors = {'aqi':'#f69517','five_day_average':'#360F39'}#------------------------------------# ---- Visualizing AQI ----#------------------------------------fig, ax = plt.subplots(figsize=(12, 8))# Plot AQI categories as background colors for associated rangesfor category, (lower, upper, color) in aqi_categories.items(): ax.fill_between(aqi_sb.index, lower, upper, color=color, alpha=0.2, label=f'{category}')# Plot the AQI and 5-Day Rolling Averageaqi_sb.plot(ax=ax, y=['aqi', 'five_day_average'], color=colors, xlabel='Date', ylabel='AQI Values (ppm)', ylim= (0,400), legend=True )# applying customizationsax.set_title('Air Quality Index (AQI) Assessment of Santa Barbara County 2017-2018', fontsize=18) # Add a legend for background colorsbackground_legend = [Line2D([0], [0], color='#00E400', lw=4, alpha=0.3), Line2D([0], [0], color='#FFFF00', lw=4, alpha=0.3), Line2D([0], [0], color='#FF9933', lw=4, alpha=0.3), Line2D([0], [0], color='#FF0000', lw=4, alpha=0.3), Line2D([0], [0], color='#8B0000', lw=4, alpha=0.3), Line2D([0], [0], color='#800080', lw=4, alpha=0.3)]# Add background color legend to the plotbackground_legend_art = ax.legend(handles=background_legend, labels=['Good', 'Moderate','Unhealthy for Sensitive Groups','Unhealthy', 'Very Unhealthy','Hazardous'], loc='upper center', bbox_to_anchor=(0.5, 1), ncol=3, fontsize =12)# Line color legendline_legend = [Line2D([0], [0], color='#f69517', lw=2), Line2D([0], [0], color='#360F39', lw=2)]# Add line color legend to the plotline_legend_art = ax.legend(handles=line_legend, labels=['AQI', '5-Day Average'], loc='upper right', bbox_to_anchor=(0.866, 0.88), fontsize =12)# Add both legends to the plotax.add_artist(background_legend_art)ax.add_artist(line_legend_art)# Add annotationax.annotate("* This peak is a result of the \nThomas Fire in Santa Barbara.", xy=(0.45, 0.5), # position xycoords='figure fraction', fontsize=12, color='black') # Adjust subplot parameters to add margin spaceplt.subplots_adjust(top=0.85, bottom=0.15, left=0.1, right=0.9)plt.show()
Read & Inspect Burn Scar Data
Let’s get a full understanding of exactly how much local area was affected by the Thomas Fire by importing the fire perimeter boundary information & some super cool Landsat 2
CA Fire Perimeters
Code
#------------------------------------# ---- Read & Inspect ----#------------------------------------# Reading in the data for CA fire perimeters ca_fire = gpd.read_file(os.path.join(os.getcwd(),'..','data','California_Fire_Perimeters_1379327890478655659','California_Fire_Perimeters_(all).shp'))#------------------------------------# ---- Check Point! ----#------------------------------------# Suppress warningswarnings.filterwarnings('ignore', category=UserWarning)warnings.filterwarnings('ignore', category=FutureWarning) # Create a figure with two subplotsfig, ax = plt.subplots(1, 2, figsize=(14, 7))# quick viuslaization of CA fire perimeters# yow-za! CA is so clearly shaped }:<ca_fire.plot(ax = ax[0], color ='#AA4203')ax[0].set_title('CA Fire Perimeters')# Subset for Thomas Fire boundary data for plottingthomas_fire = ca_fire.loc[(ca_fire['FIRE_NAME'] =='THOMAS') & (ca_fire['YEAR_'] >=2017)] thomas_fire.plot(ax = ax[1], color ='#AA4203')ax[1].set_title('Thomas Fire Boundary')# Adjust layout to prevent overlapplt.tight_layout()# Show the plotplt.show()
MPC Landsat Collection 2 Level-2
Together, we’re going to load in Landsat data directly from the Microsoft Planetary Computer STAC and collect our desired bands (SWIR22, NIR08, Red) to create a landsat array subset.LE07_L2SP_042036_20171217_02_T1 was captured on 12/17/2017 18:36:51 UTC and will be leveraged for this project.
In order to create a false color image, we need to adjust the dimensions of our data to only consider x and y coordinates. Furthermore, we will need to create an array containing the false color bands we intend on utilizing for our ROI. We’ll also be correcting the CRS so we can overlay the two datasets.
Code
#--------------------------------------# ---- Pull directly from MPC STAC ----#--------------------------------------# Suppress warningswarnings.filterwarnings('ignore', category=DeprecationWarning) # Suppress FutureWarnings# Let's pull our data fresh from the MPC STAC# We're also going to assign the bands we're interested initem_url ="https://planetarycomputer.microsoft.com/api/stac/v1/collections/landsat-c2-l2/items/LE07_L2SP_042036_20171217_02_T1"# Load the individual item metadata and sign the assetsitem = pystac.Item.from_file(item_url)signed_item = planetary_computer.sign(item)#--------------------------------------# ---- Collect band information ----#--------------------------------------# Open the desired data assets# Short Wave Infrared (SWIR22) bandasset_href_swir22 = signed_item.assets["swir22"].hreflandsat_swir22 = rioxr.open_rasterio(asset_href_swir22)# Near Infrared (NIR08) bandasset_href_nir08 = signed_item.assets["nir08"].hreflandsat_nir08 = rioxr.open_rasterio(asset_href_nir08)# Red bandasset_href_red = signed_item.assets["red"].hreflandsat_red = rioxr.open_rasterio(asset_href_red)# Green bandasset_href_green = signed_item.assets["green"].hreflandsat_green = rioxr.open_rasterio(asset_href_green)# Blue bandasset_href_blue = signed_item.assets["blue"].hreflandsat_blue = rioxr.open_rasterio(asset_href_blue)#--------------------------------------# ---- Combine band information ---- #--------------------------------------#--------------------------------------# ---- True Color ---- #--------------------------------------# Stack bands into a single datasettrue_color = xr.concat([landsat_red, landsat_green, landsat_blue], dim='band')# Updating data for plotting# Original dimensions and coordinates show us that band is a dimension# Remove length 1 dimension (band)true_color = true_color.squeeze()# remove coordinates associated to bandtrue_color = true_color.drop('band')#--------------------------------------# ---- False Color ---- #--------------------------------------# Note: For false-color, typically, you might use # a different combination (like NIR, Red, Green).# Adjust this based on the specific visualization you want.false_color = xr.concat([landsat_swir22, landsat_nir08, landsat_red], dim='band')# Updating data for plotting# Original dimensions and coordinates show us that band is a dimension# Remove length 1 dimension (band)false_color = false_color.squeeze()# remove coordinates associated to bandfalse_color = false_color.drop('band')#--------------------------------------# ---- Visualize band information ---- #--------------------------------------# Create a figure with two subplotsfig, ax = plt.subplots(1, 2, figsize=(14, 7))# Plot the true and false color images#--------------------------------------# ---- True Color Image ---- #--------------------------------------# Plot the false color imagetrue_color.plot.imshow(ax=ax[0], robust=True) ax[0].set_title('True Color Landsat Image (Red, Green, Blue)')#--------------------------------------# False Color Image#--------------------------------------false_color.plot.imshow(ax=ax[1], robust=True)ax[1].set_title('False Color Landsat Image (SWIR22, NIR08, Red)')plt.tight_layout()plt.show()
Check-point
It looks good, let’s take a quick peak at the geospatial attr
Code
#------------------------------------# ---- Check Point! ----#------------------------------------# Check geospatial attributesprint('height: ', false_color.rio.height)print('width: ', false_color.rio.width, '\n')print(false_color.rio.bounds(), '\n')# Now to update the CRS to match and check# Convert DataFrame to GeoDataFramethomas_fire = gpd.GeoDataFrame(thomas_fire, geometry='geometry')thomas_fire = thomas_fire.to_crs(false_color.rio.crs) # Print CRS to check alignmentprint('Thomas Fire Boundary CRS: ', thomas_fire.crs)print('False Color CRS: ', false_color.rio.crs)
height: 7271
width: 8291
(106785.0, 3725685.0, 355515.0, 3943815.0)
Thomas Fire Boundary CRS: PROJCS["WGS 84 / UTM zone 11N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-117],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","32611"]]
False Color CRS: EPSG:32611
Inspecting Areas Burned by Thomas Fire in Santa Barbara County (2017)
Below, we’ve overlayed the fire perimeter boundaries for the Thomas Fire over it’s respective burn scar. Our false color image displays an outline of the fire scorn area of Santa Barbara County. Here, we can observe the severity of the damage by generally visualizing the area and the types of regions impacted by the wildfire.
Code
#------------------------------------# ---- Plot Landsat False Color ----#------------------------------------# Adjust the figure size and DPIfig, ax = plt.subplots(figsize=(6, 6)) # Plot false color bandsfalse_color.plot.imshow(ax=ax, robust=True)# Plot Thomas Fire burn areathomas_fire.plot(ax=ax, color='none', edgecolor='#AA4203')# Add a legend for the burned areafire_scar = mpatches.Patch(color='#AA4203', label='Burned Area')ax.legend(handles=[fire_scar], loc='upper right', fontsize=12) # Add a title to the plotax.set_title('False Color Image (SWIR22, NIR08, Red)', fontsize=14) # Remove the plot axesax.axis('off')# Save the figure with tight bounding box and high resolutionplt.savefig('thomas_fire_plot.png') plt.show()
Combining the Visuals
Let’s put the most informative visuals together into a single figure to gain a full sense of the extent of damage caused by the Thomas Fire. In AQI the figure on the left, there is a sharp peak observed the day the Thomas Fire began (Dec. 4, 2017) that fell within the Very Unhealthy category and over a 5 day period, averaged out into the Unhealthy category. This trend can be observed at the noted location in the figure below, indicating negative public health effects on air quality resulting from the Thomas Fire. The figure on the right, displays the large parcel of Santa Barbara County that was engulfed by the fire, explaining the uptake in particulate matter observed in December of 2017. There were significant direct impacts on public health in terms of air quality as a response to this fire and this can be understood when considering the size of the burn scar seen in the figure on the right.
Code
#------------------------------------# ---- Customization ----#------------------------------------# Define AQI categories and colorsaqi_categories = {'Good': (0, 50, '#00E400'),'Moderate': (51, 100, '#FFFF00'),'Unhealthy for Sensitive Groups': (101, 150, '#FF9933'),'Unhealthy': (151, 200, '#FF0000'),'Very Unhealthy': (201, 300, '#8B0000'),'Hazardous': (301, 500, '#800080')}colors = {'aqi':'#f69517','five_day_average':'#360F39'}# Plot the images in the same figure side-by-sidefig, (ax1, ax2) = plt.subplots(1, 2, figsize = (22,8)) #------------------------------------------------------------------------# Plotting the Daily & 5-Day Rolling Window AQI for Santa Barbara County #------------------------------------------------------------------------#------------------------------------# ---- Visualizing AQI ----#------------------------------------# Plot AQI categories as background colors for associated rangesfor category, (lower, upper, color) in aqi_categories.items(): ax1.fill_between(aqi_sb.index, lower, upper, color=color, alpha=0.2, label=f'{category}')# Plot the AQI and 5-Day Rolling Averageaqi_sb.plot(ax=ax1, y=['aqi', 'five_day_average'], color=colors, ylim= (0,400), legend=True, ylabel='AQI Values (ppm)' )# applying customizationsax1.set_title('Air Quality Index (AQI) Assessment of Santa Barbara County 2017-2018', fontsize=21) ax1.set_xlabel(xlabel='Date', fontsize =13)ax2.set_ylabel(ylabel='AQI Values (ppm)', fontsize =10)# Add a legend for background colorsbackground_legend = [Line2D([0], [0], color='#00E400', lw=6, alpha=0.3), Line2D([0], [0], color='#FFFF00', lw=6, alpha=0.3), Line2D([0], [0], color='#FF9933', lw=6, alpha=0.3), Line2D([0], [0], color='#FF0000', lw=6, alpha=0.3), Line2D([0], [0], color='#8B0000', lw=6, alpha=0.3), Line2D([0], [0], color='#800080', lw=6, alpha=0.3)]# Add background color legend to the plotbackground_legend_art = ax1.legend(handles=background_legend, labels=['Good', 'Moderate', 'Unhealthy for Sensitive Groups''Unhealthy', 'Very Unhealthy','Hazardous'], loc='upper center', bbox_to_anchor=(0.5, 1), ncol=3, fontsize =18)# Line color legendline_legend = [Line2D([0], [0], color='#f69517', lw=2), Line2D([0], [0], color='#360F39', lw=2)]# Add line color legend to the plotline_legend_art = ax1.legend(handles=line_legend, labels=['AQI', '5-Day Average'], loc='upper right', bbox_to_anchor=(1, 0.86), fontsize =18)# Add both legends to the plotax1.add_artist(background_legend_art)ax1.add_artist(line_legend_art)# Add annotationax1.annotate("* This peak is a result of the \nThomas Fire in Santa Barbara.", xy=(0.28, 0.52), # position xycoords='figure fraction', fontsize=20, color='black') #------------------------------------------------------------------------# Plotting the Thomas Fire burned areas of Santa Barbara#------------------------------------------------------------------------# Remove plot axesplt.axis('off') # Plot false color bandsfalse_color.plot.imshow(ax = ax2, # Include colors robust =True) # Plot thomas fire burn areathomas_fire.plot(ax = ax2, # No color of burn area color ='none', # Opacity of edgecolor edgecolor ='#AA4203') # Add a figure legendfire_scar = mpatches.Patch(color ='#AA4203', label ='Burned Area') ax2.legend(handles=[fire_scar])#------------------------------------# ---- Plot the Fire Bound -----#------------------------------------thomas_fire.plot(ax = ax2, color ='#AA4203',# make border around shapefile edgecolor ='#AA4203', # make transparent alpha =0.5)fire_patch = mpatches.Patch(color ='#AA4203', label ="Thomas Fire")#------------------------------------# ---- Plot Landsat False Color ----#------------------------------------# Plot the false landsatfalse_color.plot.imshow(ax = ax2, robust =True) # Edit the Legend and Caption # Show lables for legendax2.legend(handles = [fire_patch], # No border around legend frameon =True,# Where legend is located bbox_to_anchor = (0.9, 0.8), fontsize =18) # Add titleax2.set_title('Areas Burned by Thomas Fire in Santa Barbara, CA (2017)', fontsize =21) # Plot the whole figure # space wellfig.tight_layout()plt.show()
Citations:
Wikipedia contributors. “Thomas Fire.” Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 16 Apr. 2024. Web. 2 Aug. 2024.
VCFD determines cause of The thomas fire. Ventura County Fire Department. (2019, March 13). https://vcfd.org/news/vcfd-determines-cause-of-the-thomas-fire/
California, State Of. Montecito Mudslides Anniversary, Reflections Through Images | Cal OES News. https://news.caloes.ca.gov/montecito-mudslides-anniversary-reflections-through-images.
Microsoft Planetary Computer. Planetary Computer. (n.d.). https://planetarycomputer.microsoft.com/dataset/landsat-c2-l2
California fire perimeters (all). California State Geoportal. (n.d.). https://gis.data.ca.gov/datasets/CALFIRE-Forestry::california-fire-perimeters-all-1/about